Example 9: Let
$$A = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$. Calculate det(A), det(B), det(AB), and
det(A + B). Also calculate det(A^T) and det(B^T). What do you observe?
ef (A) = $\begin{vmatrix} 0 & 1 \\ 2 & 3 \end{vmatrix} = (0)(3) -(2)(1) = -2$
def (B) = $\begin{vmatrix} 4 & 3 \\ 2 & 1 \end{vmatrix} = (4)(1) -(2)(3) = -2$
AB = $\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 14 & 4 \end{bmatrix}$
def (AB) = $\begin{vmatrix} 2 & 1 \\ 14 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 14 & 4 \end{bmatrix}$
def (AB) = $\begin{vmatrix} 2 & 1 \\ 14 & 4 \end{bmatrix} = (2)(4) -(14)(1) = 4$
def (A) - def (B) = $(-2)(-2) = 4 = olet(AB)$
A+B = $\begin{bmatrix} 4 & 4 \\ 4 & 4 \end{bmatrix} = def(A+B) = \begin{vmatrix} 4 & 4 \\ 4 & 4 \end{vmatrix} = 0$
def (A) + def (B) = $-2 + (-2) = -4$
def (A) + def (B)

Theorem 4.8: If A and B are
$$n \times n$$
 matrices, then
 $\det(AB) = \det(A) \det(B)$
NOT additive

Theorem 4.10: If A is a $n\times n$ matrix, then

 $\det(A^T) = \det(A)$